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Abstract--The origin of pseudotachylytes has been controversial since Wenk cast doubt on the melt origin of the 
matrix of pseudotachylytes, in 1978. The matrix of this rock is so fine grained that the crush origin of 
pseudotachylytes, revived by Wenk, cannot easily be denied. This paper presents a new line of argument based 
on the size analysis of clasts contained in pseudotachylytes in felsic granulite from the Musgrave Range, central 
Australia. These clasts are definitely crush products produced during the pseudotachylyte generation. Their 
sizes, as measured on photomicrographs of thin sections, obey the size distribution: N = N'r - °  , where N is the 
cumulative number of clasts with sizes greater than r, D is the fractal dimension, and N' is a constant that depends 
on the number of measurements, D was found to be 1.5 + 0.05 for the size ranges of 10-2000/zm. If the matrix of 
the pseudotachylytes consists mostly of ultrafine crush products, they must have formed simultaneously with 
those coarse crush products. The proportion of fine products relative to the coarse clasts can be estimated, 
assuming that a similar size distribution also holds for the fine products. The estimated area occupied by fine 
products in a thin section is of the order of only several percent, whereas the measured area of the matix is about 
6 0 ° .  Thus the major part of the matrix of the pseudotachylytes cannot be regarded as crush products. It is also 
shown that the number of clasts smaller than about 5/zm becomes very small, perhaps as a result of nearly 
complete dissolution of fine clasts in a melt. However, if the ultrafine-grained matrix of the pseudotachylytes had 
formed by crushing during seismogenic fault motion, the grain-size refinement during the crushing should have 
occurred jumping the size range of at least 1-5 ~m. This is quite unreasonable and disproves the crush origin for 
the matrix of pseudotachylytes. 

INTRODUCTION 

PSEUDOTACHYLYTES comprise an ultrafine-grained and 
generally dark-colored matrix containing various sizes 
of cataclastically deformed clasts, and they occur as 
veins or as networks with complex geometry (Philpotts 
1964, Sibson 1975, among many others). The matrix of 
this rock is so fine grained that its origin has been 
controversial. A common interpretation is that the 
matrix of pseudotachylytes associated with faults 
formed as a result of frictional melting during seismoge- 
nic fault motion (Shand 1916, Sibson 1975). Wenk 
(1978), on the other hand, showed through TEM obser- 
vation that the matrix of pseudotachylytes from a few 
localities is nearly free from glass and exhibits cold- 
worked microstructures such as tangled dislocations, 
and so he revived the 'flinty crush' (cataclasis) origin of 
Clough (1888). Weiss & Wenk (1983) later conducted 
violent experiments using a solid-pressure medium 
apparatus in which they successfully produced networks 
of finely comminuted fragments in severely fractured 
gabbro. Maddock (1983) opposed Wenk's interpre- 
tation and favored the melt origin of the matrix of 
pseudotachylytes based on microstructural evidence, 
such as the development of spherulitic and dendritic 
crystals, that are typical of rapid growth from a quench- 

ing melt, and on the disequilibrium chemistry of feldspar 
microlites. 

One of the most important implications of the studies 
of pseudotachylytes is that the shear stress along faults 
can be estimated from the amount of pseudotachylyte 
generated per given fault displacement, as demon- 
strated by Sibson (1975). The stress along faults (not the 
stress drop during an earthquake) is closely related to 
the strength of the lithosphere, and hence the study of 
pseudotachylytes is linked to the state-of-stress problem 
(e.g. Hanks & Raleigh 1980) which is of major signifi- 
cance in the Earth Sciences. Sibson's estimation is valid 
only if the melt origin is correct. If instead the matrix of 
pseudotachylytes consists mostly of crush products, one 
must know the relationship between the work done 
during the frictional slip and the amount and character- 
istics of comminuted materials in order to estimate the 
stress from the same data. Unfortunately, such a re- 
lationship is poorly understood at present. 

Despite its significance, confirmation of the origin of 
the matrix of pseudotachylytes is not simple. Mineral 
grains with tangled dislocations, such as those described 
by Wenk (1978), certainly cannot form during crystalliz- 
ation from melt. However, pseudotachylyte veins, espe- 
cially those along large-scale faults, are likely to have 
undergone numerous seismogenic events after their for- 
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mation due to repeated fault motion, Thus it is difficult 
to distinguish the dislocations of later origin from initial 
ones. Some textural and chemical evidence, the latter in 
particular, can show convincingly a melt origin for at 
least part of the matrix of pseudotachylytes. For in- 
stance, Toyoshima (1990) reports pyroxene microlites in 
pseudotachylyte veins from south-central Hokkaido, 
Japan, that formed under the metamorphic condition of 
prehnite-pumpellyite facies. Such microlites cannot be 
regarded as the products of later devitrification or alter- 
ation, and hence they are most likely to have formed via 
crystallization from melt. But the major drawback of 
these approaches is that the spherulitic and dendritic 
crystals normally occupy only a small fraction of the 
matrix of pseudotachylytes. What then is the origin of 
the other part of the matrix? Microstructural and chemi- 
cal evidence is not always unequivocal, because there 
exists a possibility that not all of the ultrafine-grained 
matrix of pseudotachylytes is of the melt origin. 

We take a completely different approach here, based 
upon the analysis of the size distributioin of clasts 
contained in the matrix of a pseudotachylyte (Fig. 1). 
Okamoto & Kitamura (1990) have shown recently that 
the size distribution of clasts in a pseudotachylyte from 
the Outer Hebrides thrust zone in Scotland obeys a 
simple power law, as typically recognized for fragments 
fractured in various manners (e.g. Turcotte 1986). In 
essence, the power law indicates that the fraction of 
fragments of a certain range of size cannot form at 
random, but is uniquely related to the amount of frag- 
ments of other size ranges. Thus our basic idea was to 
examine whether or not the area occupied by the 
ultrafine-grained matrix of pseudotachylytes is consist- 
ent with the amount of submicroscopic fragments pre- 
dicted from the measured size distribution of coarse- 
grained clasts. If they agree, the crush origin of the 
matrix of pseudotachylytes is viable; if they do not, the 
crush origin is not considered valid. 

The main purpose of this paper is to propose a new 
method for such arguments in a self-contained manner. 
Here the method is applied only to an unusually thick 
pseudotachylyte from the Musgrave Range in central 
Australia (Moore & Goode 1978, Camachol & Vernon 
in preparation), for demonstrative purposes. Appli- 
cations to other pseudotachylytes are now under way, 
and are so far giving similar results to those reported 
here and in Shimamoto & Nagahama (1991). 

MEASUREMENTS OF CLAST SIZES 

Samples for the analysis of clast-size distribution were 
collected from an eastern extension of the Woodroffe 
Thrust in the eastern Musgrave Range in central Austra- 
lia (Fig. 1). At this location, the Precambrian felsic 
granulites were thrust over felsic mylonites to the north 
during Paleozoic time (Webb 1985). Amazingly, the 
pseudotachylyte-bearing zone is up to 1 km thick 
(Camachol & Vernon in preparation). The mylonites to 
the north change gradually from S - C  mylonite into 

ultra-mylonite toward the pseudotachylyte-bearing 
zone. The granulite to the south does not exhibit perva- 
sive mylonitic deformation. 

A surprising feature of this thrust is that the 
pseudotachylyte-bearing zone is not observed to be 
accompanied by a pervasive cataclastic fault zone, de- 
spite the nearly perfect exposure. Pseudotachylyte veins 
(e.g. Figs. la & c) occur in a variety of complex modes, 
mixed with cataclastically deformed fragments of rocks 
and previously formed pseudotachylyte veins. Mylonitic 
deformation of pseudotachylytes is recognized very 
locally in the mylonite zone, but the myionitic defor- 
mation is not at all predominant in the pseudotachylyte- 
bearing zone. Implications of those features will be 
discussed elsewhere. 

Measurements of clast sizes were conducted on photo- 
micrographs of the pseudotachylyte taken under plane- 
polarized light. The purpose of such measurements is to 
determine the size distribution of clasts with a wide 
range of sizes, that are scattered in the matrix of pseudo- 
tachylytes (Fig. ld). Measurements of clasts over a wide 
area is essential to perform non-biased measurements 
for such a purpose. Thus the measurements were per- 
formed over an entire thin section using an optical 
microscope, rather than using SEM or TEM. The matrix 
of the pseudotachylyte is light to dark brown colored, 
whereas the quartz-feldspathic clasts appear white to 
colorless under plane polarized light. The sizes of clasts 
as small as 1-2 Bm were measurable on the enlarged 
photomicrographs, due to this marked contrast in color 
between the clasts and the matrix. 

To avoid biased measurements, the major and minor 
axes, A and B, were measured for all clasts on the 
photomicrographs, using a binocular lupe that can be 
mounted on the head. We first recorded the measured 
sizes directly onto a tape recorder while continuing 
measurements, and then later transferred the data onto 
a personal computer for automatic data processing. The 
use of a tape recorder greatly speeded up the measure- 
ments. 

The results were plotted as cumulative frequency 
diagrams for the major axis, A, and for the mean 
diameter, r, defined as the geometric mean of A and B, 
using logarithmic scales on both axes (Fig. 2). The 
cumulative number N is the number of clasts whose sizes 
are greater than r or A. It is evident from Fig. 2 that 
linear relationships hold for log (N) vs log (r) plots and 
for log (N) vs log (A) plots. Hence, empirical power 
laws of the form: 

N = NAA-DA (1) 

and 

N = Nrr  - ° ,  (2) 

hold at least for the size range of 10-2000Bm, where NA 
and Nr are constants that depend on the number of 
measurements. DA and Dr are called fractai dimensions 
with respect to the size distributions of the major axis 
and the mean diameter, respectively (simply called 'frac- 
tal dimensions' hereafter). 
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Fig. 2. Size distribution of clasts contained in the felsic pseudotachy-  
lyte (specimen No. 1) from the Musgrave Range,  central Australia.  A 
and B denote ,  respectively, the major  and minor axes of clasts, and r is 
the geometric mean  of A and B. N is the cumulative number  of  clasts 
whose mean  diameter  is greater  than r (closed circles) or whose major 
axis is greater  than  A (open circles). Dr and DA are fractal d imensions  
with respect to the size distributions of r and A, respectively, as 
de termined by use of the least-squares method.  The s tandard error for 

the fractal dimension is also given. 

The fractal dimensions, D A and D,., are nearly ident- 
ical (Fig. 2). This follows from the fact that the aspect 
ratio, A / B ,  or the shape of the clasts does not change 
systematically with the size of clasts (Fig. 3). To see this, 
denote the aspect ratio by R, which yields log (r) = log (A) 
- log (R)/2. Thus one can simply obtain log (r) from log 
(A) by horizontally shifting the sizes, and this is what is 

recognized in Fig, 2. Later arguments will be made only 
in terms of r. 

The frequency distribution of clasts in pseudotachy- 
lytes may appear to be random at a glance (Fig. ld), but 
a surprisingly simple law actually holds as demonstrated 
first for the clasts in pseudotachylytes by Okamoto & 
Kitamura (1990). 

POWER-LAW SIZE DISTRIBUTION 

Although still empirical, power laws have been used 
extensively to describe size distributions of a wide var- 
iety of fragmented objects (Gaudin 1926, Schuhmann 
1960, Takeuchi & Mizutani 1968, Hartmann 1969, 
Fujiwara et al. 1977, Sammis et al. 1986, Turcotte 1986, 
Nagahama 1991, among many others; for broader math- 
ematical background see Mandelbrot 1982, Schroeder 
1991). We shall briefly summarize below some of the 
unique properties of the power-law size distribution for 
the sake of later arguments, using the derivation of the 
power law by Matsushita (1985). 

Let us consider the size distribution only in terms of 
the cumulative number, N(r), whose sizes are greater 
than a characteristic size, r. A simple case in which a 
power law holds is illustrated by a one-dimensional size 
distribution shown in Fig. 4(a). Consider a thin, long bar 
whose size is specified only by its length. A power-law 
size distribution can be created as follows. 

Divide a bar with unit length into three bars and 
stipple one of them (CD in Fig. 4a). Then divide the 
remaining bars into three and stipple one of them (EF 
and GH in Fig. 4a). Divide the unstippled bars further 
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Fig. 3. Aspect  ratio, A/B ,  plotted against the mean  diameter ,  r, of the 
clasts in pseudotachylyte (specimen No. 1) from the Musgrave Range.  
Solid circles indicate the average aspect ratio in each size division on 
the log (r) axis. The  vertical bars denote the double s tandard devi- 
ations around the mean  value of r. Since the lower bound for r is 1 by 
definition, the lowest margin of the vertical bars is set to be 1. The 
small numbe r  on top of the vertical bar gives the number  of  measure-  

ments  in each size division. 

(b)  

Fig. 4. (a) A 'middle-third erasing'  Cantor  set for which a power law 
with fractal dimension,  D 1. of log 2/log 3 = 0.63 holds. (b) Self- 
similarly arranged squares,  which are equivalent to the Sierpinski 
carpet,  with fractal dimension,  D 2, of log 6/log 3 = 1.63. Note that 

D 2 is greater  than D ~ by 1. 
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into three and stipple one in each group (e.g. IK). After  
the nth step, the length of the smallest bar is 3 -n, and the 
cumulative number  of stippled bars is given by: 

N(r)= 1 + 2 + 2 2 + 2 3 + . . . + 2  n- t  

= 2" - 1 ----- 2". (3) 

Then the size and cumulative numbers satisfy the power 
law, and the fractal dimension in one dimension 
becomes: 

D a = log 2/log 3 - 0.63. (4) 

The actual fragmentation processes do not have to 
follow these steps. But in order  for the power law to 
hold, fragmented objects must be such that the re- 
arrangement such as that shown in Fig. 4(a) is possible. 
Note a self-similarity in Fig. 4(a); that is, AB is self- 
similar to AC and DB, which are similar to AE,  FC, D G  
and HB. This self-similarity appears as long as the power 
law holds. Thus to use Schroeder 's  (1991) words, the 
power laws are "endless sources of self-similarity". 

An equivalent two-dimensional set of objects can be 
constructed by arranging squares as shown in Fig. 4(b). 
In this case, a unit square is divided first into nine 
subsquares of the side of 1/3, and one square stippled on 
each row. Figure 4(b) can be obtained by repeating the 
same procedures to non-stippled squares twice more.  
After  the nth step, the cumulative number  of stippled 
squares with sides greater than 3 -n is given by: 

N(r) = 3{1 + ( 3 2 -  3) + ( 3 2 -  3) 2 

+ . . .  + (3 2 -  3)--1} 

= 3(32 - 3)"/5 - 3/5. (5) 

N(r) is thus nearly proportional to (32 - 3) n when n is 
large (n >> 1) and the two-dimensional fractal dimension 
is given by: 

D 2 = log (32 - 3)/log 3 = log 6/1og3 = 1.63. (6) 

Since the above fractai dimension is fairly close to that in 
Fig. 2, the clast size distribution in a pseudotachylyte 
from the Musgrave Range must be fairly similar to that 
in Fig. 4(b). Once again a self-similarity is obvious in 
Fig. 4(b). Note that the self-similarity in each row in Fig. 
4(b) is equivalent to that of the one-dimensional set in 
Fig. 4(a). In such cases, D 2 = D 1 + 1 holds. 

Matsushita (1985) derived a general equation for the 
d-dimensional fractai dimension: 

D a = log (b a - / ) / l o g  b, (7) 

where unstippled hypercubes are subdivided into b d 
equal-sized subcubes with the side reduced to (1/b)th of 
the side prior to the subdivision (b: any integer), and i 
denotes the number  of stippled cubes to stipple at each 
subdivision of a non-stippled hypercube. Since i is 
greater than zero, D a is less than d; that is, 

D 1 < 1, D 2 < 2, 0 3 < 3. (8) 

Moreover ,  size distributions with a negative fractal 
dimension have never been recognized for fragmented 

objects. These are important  constraints that will be 
used in later discussion. 

IMPLICATIONS FOR THE ORIGIN OF 
PSEUDOTACHYLYTES 

The size distribution gives a constraint on the relative 
abundance of clasts having different range of size. This 
relative abundance is determined by the fractal dimen- 
sion in the case of power laws. We shall now use this 
constraint to estimate the fraction of ultrafine clasts from 
the measured ffactal dimension for coarse clasts. Basic 
premises here are that the shape of clasts does not 
change significantly with size and that the same type of 
power law holds for ultrafine submicroscopic clasts, but 
with unknown fractal dimension, D x  (Fig. 5). 

The size distributions for fine and coarse clasts in Fig. 
5 can be expressed, respectively, as: 

N/N'  = (r/r') -Dx (9) 

N/N'  = (r/r') - ° .  (10) 

Here  N is the cumulative number  of objects whose 
characteristic length is greater than r, and N'  and r' are 
the cumulative number  and the size at the inflection 
point for the size distributions. Because the area occu- 
pied by a particle with size, r, is kr 2, where k is a shape 
factor, the total area occupied by all clasts with sizes 
ranging from r' to rma x is given by: 

A = , ,D 2--D (kN Dr )(rma x -- r'2-D)/(2-- D). (11) 

An identical form of equation holds for the area, occu- 
pied by ultrafine clasts, Ax.  

The relative abundance of coarse and fine clasts can 
thus be evaluated, so one can test whether the amount  of 
matrix of the pseudotachylyte is consistent with the 
predicted amount of fine clasts from the size distri- 
bution. In the evaluation here we used the values D = 
1.5, r' = 5/xm and rma x = 2000/~m based on the data for 

RNE P~BCTS : COARSE P~UCTS 

rm~ f' r max 

GRAIN SIZE, log (r) 

Fig. 5. Measured size distribution for clasts in pseudotachylytes with 
fractal dimension, D, and the presumed size distribution for ultrafine, 
submicroscopic clasts with unknown fractal dimension, D x. rmi n and 
rma x are the assumed minimum size and the maximum measured size of 

clasts, respectively. 
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coarse clasts in Fig. 2. The minimum size of clasts was 
assumed arbitrarily as 50/~, a few times larger than the 
unit cell of common minerals, and the fractal dimension, 
Dx,  could vary from 0 up to nearly 2. 

The result predicts that the total area for fine clasts is 
in most cases less than several percent (Fig. 6). The area 
rapidly increases with increasing D x when D x ap- 
proaches 2, but does not exceed 20%. As will be dis- 
cussed later, the case for D = 2 over wide size ranges is 
quite unlikely, and hence the area for fine products, 
expected from the clast-size distribution, is perhaps on 
the order of several percent. The extrapolation of the 
measured size distribution towards fine sizes yields an 
area for fine clasts of about 5% (Fig. 6). 

The actual area of the ultrafine-grained matrix of the 
same specimen is measured as 60%, by using a point- 
counting technique on the same photomicrographs. This 
is one order of magnitude greater than the predicted 
value from the size distribution. So on this basis, a major 
portion of the matrix cannot be regarded as being of the 
crush origin. 

A critical point regarding the above estimation is the 
size distribution of fine-grained clasts. Hence we have 
measured the size distribution of finer grains on the same 
specimen shown in Fig. 2, using more enlarged photo- 
micrographs (Fig. 7). The results are somewhat surpris- 
ing, because the cumulative-number vs clast-size curves 
becomes flattened towards smaller grain sizes in the 
small size regimes; the size distribution for sizes greater 
than about 10-20/zm are nearly identical to those shown 
in Fig. 2. The flattening of the curves means that clasts 
smaller than about 5/zm are not common in pseudo- 
tachylytes. In our opinion, this clearly denies the crush 
origin of the matrix of the pseudotachylyte from the 
Musgrave Range, because if the ultrafine-grained matrix 
of pseudotachylytes had formed by severe crushing, the 
crushing and fragmentation must have jumped the size 
range of 1-5 /xm to form the uitrafine matrix. This, 
however, seems to be physically unreasonable. We be- 
lieve that the lack of fine clasts demonstrated in Fig. 7 is 
due to nearly complete melting of fine clasts, since 
corroded margins of clasts are very common in the 
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Fig. 7. Size distribution of finer clasts contained in the felsic pseudo- 
tachylyte (specimen No. 1) from the Musgrave Range, central 
Australia (for notations see caption of Fig. 2). The measurements were 
made on the same thin section as that used for the measurements in 
Fig. 2, using more enlarged photomicrographs. The minimum detect- 

able size on the photomicrographs were about 1-2/~m. 

pseudotachylyte from the Musgrave Range (e.g. 
Fig. lb). 

CONCLUSIONS AND DISCUSSIONS 

The major results of the present work are summarized 
as follows. 

(1) The clasts of various sizes contained in a pseudo- 
tachylyte from the Musgrave Ranges, central Australia, 
obey a power-law size distribution with a fractal dimen- 
sion of 1.5 (Fig. 2). 

(2) A new method for estimating the fraction of 
ultrafine clasts from the power-law size distribution of 
measured clasts is proposed. The estimated amount of 
ultrafine clasts is smaller than the true area of the fine- 
grained matrix by about one order of magnitude (Fig. 6), 
which suggests that the matrix of the pseudotachylyte 
was not formed by progressive fragmentation (crush- 
ing). 

(3) Ciasts in the size range of 1-5 /~m are almost 
absent from the pseudotachylyte veins from the Mus- 
grave Range (Fig. 7). This further refutes a crush origin 
for the matrix of the pseudotachylyte, because crushing 
and fragmentation are most unlikely to jump a certain 
range of sizes, and then form even finer-grained crush 
products. 

Although the predicted amount of fine clasts (Fig. 6) is 
not particularly small when D is close to 2, the size 
distribution with D x  = 2 is quite unlikely to hold over 
the entire range from 50 /~ to 5 k~m in view of the 
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properties of the power-law size distribution summar- 
ized in a previous section. The fractal dimension of 2 
corresponds to the case in which the number  of stippled 
cubes, i, in equation (7) is zero. In other  words, the case 
for D = 2 implies lack of size distribution, and the 
breakdown of the power-law distribution. Thus a fractal 
dimension close to 2 is not expected to hold over a wide 
range of sizes. Moreover ,  a lower bound in the grain-size 
reduction is most likely to exist, owing to the rapid 
increase in the total surface area upon further grain-size 
refinement. Below this limiting size, there is no increase 
in the cumulative number of fragments and the fractal 
dimension sharply reduces to zero. Such a lower bound 
in the clast-size refinement further reduces the predicted 
amount  of ultrafine clasts to below that shown in Fig. 6. 
Hence nearly one-order-of-magnitude or even more 
difference in the predicted and observed amounts of 
fine-grained matrix of the pseudotachylyte (result 2 
above) is probably real. 

The method proposed here provides a new way of 
looking at pseudotachylytes,  and we hope that various 
pseudotachylyte veins from other  regions will be exam- 
ined by this technique. In applying the technique, how- 
ever, one must be careful about the interpretation,  when 
pseudotachylyte veins occur near a distinct cataclastic 
fault zone. This is because the fault zone could have 
acted as the reservoir for ultrafine-grained clasts which 
could have been fluidized and transported for some 
distance. For precise arguments in such cases, the analy- 
sis of clast-size distribution must be carried out over the 
entire cataclastic fault zone. In order  to avoid such an 
overwhelming difficulty, we selected pseudotachylyte 
veins from a thrust without a distinct cataclastic fault 
zone. The lack of a cataclastic fault zone in a massive 
pseudotachylyte zone may have an important  bearing on 
the pseudotachylyte problem, but this will be discussed 
elsewhere. 

Results (2) and (3) above, combined with textural 
evidence such as the development  of microlites and 
corroded structures (Fig. lb) ,  strongly suggest the melt 
origin for the matrix of pseudotachylyte from the Mus- 
grave Range, central Australia. A more comprehensive 
argument about the origin of pseudotachylytes will be 
made elsewhere. 
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